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Abstract

A basic objective in computational fluid dynamics is the efficient solu-
tion of nonlinear systems of equations that arise in finite element modeling
of convective-diffusive flow. The use of implicit Newton-like schemes to
solve the coupled system of Navier-Stokes and continuity equations en-
ables rapid convergence, although the well-known difficulty of indirect
pressure linkage requires attention when forming the Jacobian matrices.
Traditional approaches for overcoming this obstacle include reordering
strategies, modification of diagonal terms, and changes of variables. In
contrast, we develop a primitive variable finite element formulation which
employs an auxiliary pressure equation derived from the Navier-Stokes
and continuity equations. This formulation extends the work of Rice and
Schnipke, where a similar equation was developed in the context of a seg-
regated solution method. Approximate Newton methods using the new
finite element formulation are evaluated in terms of accuracy, convergence
rate, and overall efficiency for flow problems with varying degrees of non-

linearity.



1 Introduction

The efficient solution of nonlinear systems of equations that arise in finite el-
ement modeling of convective-diffusive flow is a basic objective in computational
fluid dynamics. One commonly used approach is to employ implicit Newton-like
schemes to solve the coupled system of Navier-Stokes and continuity equations,
where the difficulty of indirect specification of pressure necessitates considera-
tion. Specifically, if the primitive variables of velocity and pressure are used in
direct discretization of the problem, zero terms are produced on the diagonal of
the Jacobian matrix. To remedy this situation, researchers have devoted much
effort to the development of reorderings and modification of the diagonal terms.
Alternatively, we develop a primitive variable formulation that overcomes the
difficulty of indirect pressure linkage and its detrimental effects on the Jacobian
matrix by incorporating an auxiliary pressure equation derived from the Navier-
Stokes and continuity equations. We consider explicit formation of the Jacobian
matrix both analytically and with the use of finite differencing approximations.

Development of the subsidiary pressure equation extends the finite element
work of Rice and Schnipke [1], which is itself based on the SIMPLER finite
difference technique of Patankar [2], where similar equations are derived within
the context of a segregated solution approach. As described, for example, by
Chorin [3], a distinguishing characteristic of segregated solution methods is that
the governing partial differential equations are repeatedly solved in sequence
rather than concurrently. This feature offers the advantage of relatively modest

memory requirements, since the coefficient matrix for only one linearized system



must be stored at a given time. However, segregated solvers sometimes cannot
adequately handle strong coupling because of the approximations that produce
the linearized systems. In addition, since the segregated solution approach
reduces the residual only locally at each step, the number of iterations required
for convergence and the computational effort tend to increase significantly as
grids are refined (see, e.g., [4]).

We maintain the favorable features of the Rice-Schnipke finite element for-
mulation and incorporate the benefits of solving a fully coupled nonlinear sys-
tem in which the residual is reduced globally at each iteration. The resulting
discretized pressure equation is syminetric positive definite, and equal-order
interpolation functions can be employed for all variables instead of the usual
lower-order interpolation for pressure. As shown by Rice and Schnipke [1],
the segregated solution variant of this problem formulation eliminates spurious
pressure modes that often arise for simple multilinear elements when constant
pressures would be required to satisfy the Babuska-Brezzi stability condition.

We evaluate the effectiveness of the new velocity-pressure-temperature for-
mulation in the context of approximate Newton methods for solving flow prob-
lems with varying degrees of nonlinearity. Numerical results are presented for
several standard test problems, including developing duct flow, flow over a
backward-facing step, and natural convection. The Newton-like methods are
compared with the corresponding segregated solution technique in terms of so-

lution accuracy, rate of convergence, and overall efficiency.



2 Problem Formulation

In this section we define the class of problems under consideration, namely,
those arising in the modeling of incompressible, laminar, Newtonian fluid flow.
The finite element discretization of the governing partial differential equations

is presented, and the subsidiary pressure equation is derived.

2.1 Governing Partial Differential Equations

We consider the three-dimensional steady-state partial differential equations
that govern incompressible, laminar, Newtonian fluid flow. The conservation of

mass equation, or continuity equation, is given by
V.pu =0, (2.1)

where p and @ = [uy, us, us]’ respectively denote density and velocity, with the
superscript ¢ indicating the vector transpose. The continuity equation is coupled
with the Navier-Stokes equations and the thermal energy equation with no heat

generation, which in the Cartesian coordinate system are given respectively by

pu-Vu; =V - (uVu;) + pg; — j=1,2, 3, (2.2)

9P
890]» ’
and

pepu - NT =V - (kVT). (2.3)

Here T, g, p, k, and ¢, respectively denote temperature, gravitational force,
viscosity, thermal conductivity, and specific heat, where the last three variables
are known functions of temperature and pressure. All fluid properties are as-

sumed to be constant within an element, so that V-« = 0 on an element basis.



While the density, p, is usually removed from (2.1) for incompressible flow, we
retain it to ensure conservation of mass for nonisothermal flows, where density
may vary according to a particular constitutive equation.

To discuss derivation of the auxiliary pressure equation, we focus first on the
coupling of the steady-state continuity and incompressible Navier-Stokes equa-
tions. Thus, we initially consider two-dimensional isothermal flow, for which
the temperature and density variables remain constant, to discuss the problem
formulation. This form can then easily be extended to include the additional
velocity, temperature, and density variables for three-dimensional nonisother-
mal flow. The corresponding boundary value problem is as follows: Given the
bounded spatial domain © C R#2, with a smooth boundary I' and unit outward
normal n, find w(®) and p(x) satisfying (2.1) and (2.2) as well as the appropriate
well-posed boundary conditions. Typical Dirichlet and diffusive-flux Neumann

boundary conditions for velocity are expressed by
u=g(z), €T, and uVu-n = h(x), ® €Ty, (2.4)

where g and h are given functions, and I'y; and I', are subsets of the boundary
I’ such that

r, =T, r,Nr, =0. (2.5)

Note that outflow boundary conditions for incompressible flow are subject to

different interpretations, as discussed by Gresho [5].

2.2 Finite Element Discretization

Finite element discretization of the flow equations yields a nonlinear system



of the form
F(w) = A(w)w — b(w) = 0, (2.6)
where F': #2 — R2. Using the primitive variables of velocity and pressure, w

can be partitioned accordingly:
w = [uy, us, pl'. (2.7)

The matrix A in (2.6) has block diagonal structure, which for two-dimensional

isothermal flow is given by
A= Au, , (2.8)

where A,, and A,, indicate the coefficient matrices corresponding to the mo-
mentum equations, and A, is the coefficient matrix of the auxiliary pressure
equation. The contents of these matrices and the corresponding components of
b will be discussed in this section.

Consider the application of the finite element method to (2.2), where for
simplicity we first discuss the scalar convection-diffusion equation. This equa-
tion is restated as follows in terms of the general variable ¢, denoting either u;
or us:

o Op
pu Vo =N - (uVo)+ pg; — B2, (2.9)
where j denotes the corresponding spatial dimension 1 or 2. We wish to solve
the following boundary value problem: Given the bounded domain Q C #?,
with smooth boundary T such that (2.5) holds and has unit outward normal n,

find the function ¢ that satisfies (2.9) and the boundary conditions

p=yg(=), z€l, and uVeg-n=h(x), x €Ty. (2.10)



The variational formulation is determined by taking the weighted average
of (2.9), where the spaces of admissible trial and weighting functions are given
respectively by

S={b(@): v eH Q) v, =g} (2.11)
and
V={d@): veH Q) dr,=0} (2.12)

The variational formulation thus becomes: Find ¢ € S such that for all q/; eV

a(¢, ) = L(9), (2.13)

where the bilinear form a((/),q/;), which 1s nonsymmetric for the convection-

diffusion problem, is given by

a(qs,(z)):/ﬂpu.wédmr/ﬂqu.v&da, (2.14)

and the linear form L(QAS) is given by

L(9) :/Q(ng - %)qf;dQ-F/ hédr . (2.15)
J 1Y

The streamline upwind Petrov-Galerkin (SUPG) approach of Brooks and
Hughes [6], with enhancements by Hughes, Mallet, and Mizukami [7], is in-
corporated for accurate modeling of convective effects. A modified weighting
function is introduced so that a streamline upwind perturbation exists only in
the flow direction. An additional term, acting in the direction of the solution

gradient, is used to capture discontinuities.

The problem domain €2 is partitioned into F discrete regions €., where

B E B E
Q=) and Q. =0. (2.16)

e=1 e=1



We employ the finite element analogue of the space S, as given by
SP =" €CQ) : WMo, € PRQ) Y Qe €97, Wi, =9}, (217)

where pk(Qe) is the space of polynomials of degree & > 0 on €., and 4" denotes
the partitioning used for a given problem. There is no continuity requirement

across interelement boundaries, so that the weighting function
Psurs = 6 + 10, (2.18)
is contained in ", where
Wh = (" € C7HQ) : o, € PHQ)Y Q. e, M r, =0}, (2.19)

Here ¢ € C?is the standard Bubnov-Galerkin weighting function (corresponding
to the interpolation function) and w € C'~! is a discontinuous perturbation of
¢ which includes weighting functions for upwinding and discontinuity-capturing
effects:

W =Tu-Vo—+mi-Vo. (2.20)

The locally defined upwinding and discontinuity-capturing terms, given respec-
tively by 7 and 79, have the dimension of time, so that w is nondimensional.
While various techniques have been developed for determining 7 and 72, which
are functions of velocity, material properties, and element parameters, we em-
ploy the method given in [7]. Also, % denotes the projection of w on V¢", as
given by

=

u-voh B h
{ o VO Ve £ 0 (2.21)

0 otherwise.



A discrete approximation of the variational problem then becomes: Find

¢" € S" such that for all q/; e wh

ar(¢",9) = L7 (9), (2.22)

where

E
ar(¢",9) = a(¢",4) + Z/ﬂ [pu - Vo' + V- (—pVe™)] wdQ, (2.23)

and the summation notation indicates that the element quantities are placed
in global positions according to the node numbering scheme. The linear form

LT(QAS) is given by

L4(8) = 1) + [ (piy = Fyia, (2:24)

and @ is given by (2.20). Because the perturbations introduced by the SUPG
formulation are restricted to the element interiors, they affect neither boundary
nor continuity conditions.

Note that a, cannot be interpreted as a global integral over 2 because of the
diffusive term V - (—pV¢" )i, which is properly defined only over the elements
2.. Hughes and Brooks [8] indicate the circumstances under which this term
of (2.23) vanishes: the medium of interest is isotropic, so that g = pé;;, multi-
linear isoparametric interpolation functions are employed, and the elements are

rectangular. This is the case for all problems considered in this work.

2.3 Derivation of the Auxiliary Pressure Equation

We extend the segregated velocity-pressure approach of Rice and Schnipke

[1] to derive the new pressure equation. As previously discussed, the method of



weighted residuals is employed to discretize the momentum egs. (2.2). We next
turn to the continuity eq. (2.1), by which pressure is indirectly determined.
Specifically, if the correct pressure is substituted in the momentum equations,
then the resulting velocity field satisfies the continuity condition. While many
techniques attempt to remedy the problem of indirect pressure linkage, most of
these produce either unstable or inaccurate solutions. In our method the prob-
lem of indirect pressure specification is solved by manipulating the momentum
and continuity equations to derive a subsidiary Poisson equation for pressure.
Derivation of the auxiliary pressure equation begins with consideration of

the weak form of the element continuity equation,
/ NV - pudQ =0, (2.25)
Q.

where for Galerkin’s method of weighted residuals the weighting functions and
interpolants are identical. Applying the chain rule and Green’s formula to this
equation and approximating the velocity components by their interpolated val-

ues then produce in the two-dimensional case

2 6N 2
—— Nlu,dQ = N dT 2.26
/ﬂep,;al‘k U /Fep Zuknk ) ( )

k=1

where the n; denote the components of the unit vector normal to I', and in this
context the wuy are element vectors. Note that the surface integrals are zero
everywhere except for the inflow and outflow boundaries, where they represent
mass flux crossing the boundaries.

At this point the pressure variable is introduced into the system. First,

the form of the discretized system of equations for momentum is modified to

10



emphasize the pressure variable. These equations become
e dp
Age° = f N dQ, (2.27)
Ox;

where Aj indicates the coefficient matrix corresponding to the bilinear form

(2.14) and
:/ N/JV([)'ndF-i-/ Npg;dSQ. (2.28)
. Q.

Note that for SUPG convection modeling

< ON ON . ON ON
N=N+n <U16—$1+UQ6—362)+7'2 <u18—+ 3362) (2.29)

We introduce an approximation by assuming that the pressure gradient remains
constant over a given element and thus can be removed from the integral. Hence,

the following explicit representation of the velocity results:

¢ = [4) 1( /NdQ ) (2.30)

Next, velocity is expressed in terms of the pressure gradient and is substituted
into the continuity equation. We assume that the pressure gradients can be
expressed as constants at each node of a given element, as given by the vector

cg 1n the following equation:
¢ =" —cf (2.31)
Zj

where ¢ are considered to be partial velocities, as determined by the momen-
tum equations with the effect of pressure removed.

Equating terms that represent the pressure contributions to velocity in the
eqs. (2.30) and (2.31) and then assembling the appropriate global systems pro-

duce the following set of equations, which can be used to calculate the pressure

11



coefficients cy:

A¢C¢ = 8, (232)

where ¢, = Zle c; and
E
s= Z/ NdQ. (2.33)
e=1 2

Instead of solving the linear system (2.32) to obtain the pressure coefficients,

these nodal values are approximated by

5

c; = , t=1,...,n, (2.34)

@
where Ay = [ai;], ¢y = [c1,...,cn]", and n indicates the global system dimen-
sion. Note that if ¢; is specified as a Dirichlet boundary condition, then (2.31)
indicates that ¢; = ¢; = ¢4, so that ¢; = 0. Next, substitution of (2.31) into
(2.26) for the element vectors wu; and interpolation of the pressure gradients
enable the element pressure vector, p, which is considered constant for a given

element, to be placed outside the integrals. The following system results:
At = £5 (2.35)

where the coefficient matrix is symmetric positive definite, as given by

.
Q

2 '
ON ON
t e bl el
pkgle cy, <3xk o, )dQ, (2.36)

e

and

fi= |

We next consider the formation of the partial velocities uy, which are used

e

2 aN 2
Py (ENtuk) s —/ PN D (ugny)dr. (2.37)
k=1 Te =

k=1

to compute the right-hand-side vector f, of (2.35). The nodal form of (2.30) is

12



given by

1 - : 5 00 0P
e _ _}: s € _ NdQ=—"1,1,...n, 2.
¢ @ _— (audf) + 17, /ﬂe Ox; ! (23
12

where the notation fﬁ indicates the i*” component of the vector }; The com-
ponents of the partial velocity ¢ = [61, ..., ¢,]" can thus be represented by

n

(/éi:i > (aad) + fi, |, i=1,....n. (2.39)

@
=1
1#i
Note that the algebraic form of the partial velocities developed in the segregated
solution approach of Rice and Schnipke [1] is retained, although the intermediate

linearized momentum systems are not solved to obtain trial velocities for use in

the row sums.

3 Formation of the Jacobian Matrix

We next consider analytic formation of the Jacobian matrix corresponding
to (2.6), which is given by
F'(w) = A(w) + A (w)w — b (w), (3.1)

where b (w) = [(’?Tb;]' Note that if the j* column of A is denoted by a;(w),

then the matrix-vector product A(w)w can be written as

A(w)w = wja;(w), (3.2)
ji=1
so that A’(w)w can be formed as a linear combination of its columns’ Jacobian

matrices:

Al(w)w = ija}(w). (3.3)

13



As shown by Curfman [9], the Jacobian contributions corresponding to the
momentum equations are formed as expected. We present details only for the
auxiliary pressure equation, where (3.3) implies

3146 i 3al
l = 1,2, 4
6ukp Zp Tuy (3.4)

and n, denotes the number of nodes of an element, taken here to be four for

the quadrilateral case. The element Jacobian is given by

pe o pe
Oay :[ a”], F=1,2, (3.5)

8uk 6ukj

and the two-dimensional nodal form of (2.36) indicates

ON; ON; <= Npsm  ON; ON; <= Nopsm
¢ = E - E dQ .
l / (61‘1 81‘1 el ul + 8902 8902 - U2 ) ’ (3 6)

Amm —1 Amm

where J\;’;‘,f’", k = 1,2, is replaced by zero if uy,, is specified as a Dirichlet

mm

boundary condition. Partial differentiation of (3.6) produces
dal © ON; ON 5 [ —Npspm Ol Ny Osp
i :/ P ! Z Ui \2 S U1 +
Oug; a. | Ox1 Oy =\ (amim)® Ouk, — amm Ou,
ON; ON; = [ —Npsp, Oalz Ny Osp
+ _l Z — 52 Cm + = 5
Oxo Oxo — (anim)?  Oug; amim  Oug;
The term sy, is given by (2.33), so that

r oy [ (3)

! oz, T2 0xa TN Oxy
67’2 (V 6Nm 8Nm) (8121 8Nm 6122 8Nm)
Uy + 7 + .

81‘1 T 81‘2 8ukj 89@1 8ukj 8902

ON, _ Om (u ON,, aNm) N ON, 59)
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Because of the analogous forms of fp and aqu ,
9 P .
o, -
0w, ON __,0u & d(uyny)
1 02 17
—+—N dQ — N ——=dI.
6’11,1 Z/ (81‘1 6’11,1 + 6902 8u1) ;‘/Fep 8u1
(3.10)
Differentiation of (2.39) yields
Ouyg, 0 1 - “ s
duy,  Ouy, |aF =D (aiFug) + f, (3.11)
J J ;;1
_ 1 aj "~ Jajt O,
lek (62] )6k1a - aulj [ IZ_; aulj ki aul ) k - 1a2a
I

where 6;; denotes the Kronecker delta. Note that if uy, is specified as a Dirichlet

.. _ (’mkl < (’mkl _
boundary condition so that uj, = ug,, then Tun; = 6;; and B = 0.
4 Numerical Results

The objective of this section is to evaluate the efficiency of the approximate
Newton strategies for the solution of convective-diffusive flow problems with
varying degrees of nonlinearity when the previously described velocity-pressure
formulation is employed. Of particular interest is a comparison between the
Newton-like schemes and the segregated solution approach of Rice and Schnipke
[1], since the velocity-pressure formulations of the two approaches are closely

related. All computational results were generated on a single processor of a

CRAY Y-MP at the NASA Langley Research Center.
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4.1 Description of Test Problems

We employ three basic test problems: developing flow in a plane channel,
flow over a backward-facing step, and natural convection within an enclosed
region. Since these cases have been previously examined by numerous other
researchers, the accuracy of our solutions can easily be validated. We discretize
each of these test problems with a coarse and fine mesh of rectangular elements,
and alter the fluid properties to create varying degrees of nonsymmetry and
nonlinearity.

We first consider isothermal developing flow in a 1m by 100m rectangular
plane channel at Reynolds numbers of 75, 150, 400, 800, and 1600. A uniform
velocity profile is specified at the inlet, while zero pressure is imposed at the
outlet. No slip boundary conditions are given for the top wall, and a symmetry
condition exists at the bottom of the grid. These test cases are similar to
cases considered by Rice and Schnipke [1] and Gosman et al. [10] as well as
various other researchers, and are presented for benchmark comparisons of flow
features. The meshes DUCT1 and DUCT2 are employed, which respectively
have the dimensions of 7x61 and 11x181.

We examine isothermal flow over a backward-facing step, where the problem
and mesh geometry are adapted from Rice and Schnipke [1] and Gartling [11].
Although the problem geometry is simple, the flow exhibits complex features
that are found in many other cases of practical interest. The channel is 10.1mm
by 200mm and has fully-developed flow specified at its inlet, 0 < 2o < 5.2mm,

so that the channel region upstream of the step is excluded. All solid walls are
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assumed to be non-slip, and zero pressure is assumed at the outflow boundary.
The inflow is specified by ui(x2) = .22225(5.2 — @2) for 0 < 23 < 5.2mm,
producing an average inflow velocity of u; = lmm/s. Fluid properties are
varied to produce flow at Reynolds numbers of 100 and 200, which duplicate
the experimental conditions of Armaly et al. [12]. Meshes of sizes 25 x 43 and
35 x 63 are considered as test cases STEP1 and STEP2.

While the previous flow problems include only the momentum and pressure
equations, thermally driven cavity flow with the Boussinesq approximation in-
corporates the thermal energy equation and a constitutive equation for density.
The problem geometry is taken from the comparative study of de Vahl Davis
and Jones [13], in which various numerical methods are considered for the nat-
ural convection problem of air at a Prandtl number of .71 in a square cavity
with differentially heated vertical sides. The walls of the problem domain in
the zi-direction are insulated, while the walls in the zo-direction are held at
temperatures T and 75, where T} > T5. Gravitational force is assumed to act
in the —xy direction. In accordance with the work of Schnipke [14], we analyze
the problem on a uniform 25 x 25 grid, labeled CONV1, for Rayleigh numbers
103,10%, and 10° and on a uniform 41 x 41 grid, labeled CONV2, for the Raleigh
number 10°. Our solution accuracy is compared with that of Schnipke [14] as
well as with the benchmark solution of de Vahl Davis [15].

Table 1 contains various parameters of the analytically formed Jacobian
matrices associated with these test problems, including the mesh dimension,

matrix dimension, and approximate number of nonzeros. Note that the Ja-
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cobian’s nonzero structure tends to vary slightly for a given mesh according
to flow parameters and even among different Newton iterations of a particular
problem. However, this table provides adequate estimates for our purposes,
since the number of nonzeros for an individual grid deviated a maximum of 0.5

percent for all test problems.

4.2 Solution Procedure

We begin by generating an initial approximation for the Newton-like schemes
by performing a variable number of iterations of the segregated solution ap-
proach. Experimentation has shown that reduction of the relative residual norm,
””1{—?% < €1, to less than 0.5 works well for the developing duct flow and natural
convection problems, while the slightly larger value of 1.0 is sufficient for the
backward-facing step problems.

Analytic formation of the Jacobian matrix proved to be very efficient, re-
quiring only four to five times as long as a single evaluation of the residual
vector F' for the cases under consideration. Although the residual can be evalu-
ated with little additional effort during the assembly of the Jacobian matrix, we
elect to form the residual as the first step of each Newton iteration to monitor
convergence and to indicate whether evaluation of the Jacobian is necessary in
the Newton process. For all cases under consideration, we form a new Jacobian
matrix F'(w**1) only if H|1|71?1(+2|)||2|2 > .25 .

In addition to analytic formation of the Jacobian matrix, we consider forward

differencing approximations. Both techniques accurately capture the flow field

for the test cases; however, even with the use of strategies for minimizing the
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number of function evaluations, the differencing approach is much more costly
than analytic formation. Since for most flow problems of practical interest,
the number of required function evaluations for the differencing approximation
significantly exceeds five, the utility of the differencing approach is limited.
The natural ordering of the nodes is used, where all unknowns for a par-
ticular grid point are numbered before proceeding to the succeeding node. We
solve the linearized Newton systems by banded LU decomposition using LA-
PACK [16]. While inexact Newton methods that incorporate Krylov projection
techniques for the solution of the linear systems are often preferable in terms
of storage requirements and computational effort, these methods require ap-
propriate preconditioning strategies and convergence monitoring. Since these
issues can complicate the solution process, particularly for nonsymmetric sys-
tems, direct solution allows us to focus on the problem formulation without

these additional concerns.

4.3 Comparison of Results

Convergence and timing information for the segregated and simultaneous
solution approaches are presented in Tables 2, 3, and 4 for developing duct
flow, backward-facing step flow, and natural convection, respectively. Iteration
counts for the approximate Newton’s method are given in the form a/b, where
a indicates the number of iterations of the segregated solver needed to generate
an appropriate initial approximation, and b denotes the number of Newton
iterations. Damping is required within the approximate Newton approach only

for solution of the natural convection problem with a Raleigh number of 10°.
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Within the segregated solver a variable-band Cholesky factorization method
[17] is used to solve the symmetric pressure equation. In addition, a tridiagonal
matrix algorithm [2], [14] is employed for the momentum equations.

Our experiments indicate that for all test problems the approximate New-
ton method, using the velocity-pressure formulation discussed in Section 2, de-
termines the flow solution both rapidly and accurately. Differences between
solutions obtained by the segregated solution technique and the approximate
Newton method fluctuate only according to the specified strictness of the con-
vergence criteria. Key flow features agree with those discussed by Rice and
Schnipke [1], Gosman et al. [10], and Armaly et al. [12].

The new velocity-pressure-temperature formulation overcomes the difficulty
of indirect pressure linkage inherent in the coupled system of Navier-Stokes and
continuity equations. The auxiliary pressure equation generates nonzero terms
for all diagonal elements of the Jacobian matrix, thereby facilitating the use of
rapidly converging Newton-like methods without requiring reordering strategies
or modification of the diagonal terms.

This approach is particularly useful for finely discretized problems with high
degrees of nonlinearity. As discussed by MacArthur and Patankar [4], since the
segregated solver reduces the residual only locally at each step of the solution
process, its convergence rate is strongly influenced by the number of unknowns.
In addition, the decoupling inherent in the segregated solver causes relatively
slow transmission of boundary data throughout the problem domain. In con-

trast, the Newton-like schemes reduce the residual for the entire domain and
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instantaneously propagate boundary data throughout the problem.
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Table 1: Test Problem Parameters

Problem Mesh Jacobian Number of
Name Dimension | Dimension | Nonzeros
DUCTI 7 x 61 1,281 33,750
DUCT2 11 x 181 5,973 181,355
STEP1 25 x 43 3,225 105,380
STEP2 35 x 63 6,615 225,710
CONV1 25 x 25 3,125 108,600
CONV2 41 x 41 8,405 291,875

24




Table 2: Comparison of Solution Techniques:
Problems DUCT1 and DUCT?2

Problem: DUCT1 Problem: DUCT2

Reyn. | Solution
# Method || # of | Time #{—,“”2— # of | Time #{—,“”2—

Iter | (sec) | (x 1077) || Tter | (sec) | (x 1077)

75 Seg. 43 6.86 7.75 43 | 31.29 9.16
Newton 2/4 1.56 0.70 2/5 8.60 3.58
150 Seg. 47 7.50 8.24 51 | 37.13 8.53
Newton 2/4 1.56 1.80 3/6 9.17 5.91
400 Seg. 60 9.59 8.43 64 | 46.85 9.89
Newton 3/7 1.77 1.78 3/5 11.39 1.44
800 Seg. 73 11.77 8.39 81 | 59.84 9.67
Newton 3/5 2.12 0.26 2/6 12.04 4.73
1,600 Seg. 83 13.50 9.55 107 | 79.76 9.20
Newton 5/6 2.39 3.41 2/5 15.02 6.10

Seg.: Segregated Solution
Newton: Approximate Newton’s Method

Convergence Criterion:

ILE]|

1 E o]l

< 1076




Table 3: Comparison of Solution Techniques:
Problems STEP1 and STEP2

Problem: STEP1 Problem: STEP2
Reyn. | Solution

7 Method || # of | Time 7||1|Ti—’,"ﬁ’”2 # of | Time 7”1;%2";1"”2
Iter | (sec) | (x 1077) || Tter | (sec) | (x 1077)

100 Seg. 127 | 51.96 9.00 231 | 191.64 9.87

Newton 4/8 9.01 6.96 4/7 20.03 2.67

200 Seg. 179 | 73.02 9.58 306 | 255.55 9.00

Newton 4/8 13.37 8.19 4/8 32.74 2.75

Convergence Criterion:
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Seg.: Segregated Solution
Newton: Approximate Newton’s Method

< 1076
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Table 4: Comparison of Solution Techniques:
Problems CONV1 and CONV2

Solution || # of | Time ”ﬁi—’,"ﬁllb

Problem | Method || Iter | (sec) | (x 1077
CONV1-10? Seg. 90 41.48 9.93
Newton 2/6 | 14.20 2.61
CONV1-10* Seg. 120 57.34 9.79
Newton 3/7 15.67 3.92
CONV1-10° Seg. 143 67.01 9.88
Newton 3/8 19.32 8.81
CONV2-10° Seg. 253 | 152.43 9.39
Newton 4/10 | 44.11 5.33

Seg.: Segregated Solution

Newton: Approximate Newton’s Method

Convergence Criterion:
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